The Cement Plant Operations Handbook
SEVENTH EDITION

FREE
TO SUBSCRIBERS OF INTERNATIONAL CEMENT REVIEW

The Concise Guide to Cement Manufacture
Philip A. Alsop, PhD
The Cement Plant Operations Handbook is a concise, practical guide to cement manufacturing and is the standard reference used by plant operations personnel worldwide. Providing a comprehensive guide to the entire cement production process from raw material extraction to the finished product, the industry’s favourite technical reference book is now fully updated with new material and an extended chapter on alternative fuels. Key sections covering raw materials, burning, grinding and quality control are supported by a range of chapters addressing critical topics such as maintenance and plant reporting, alongside a detailed appendix with essential process calculations.

Contents

Section A – Process summaries

1. **Introduction**
 1. The basics of cement manufacture
 2. History of cement manufacture
 3. Portland cement in today's world

2. **Raw materials**
 1. Raw materials
 2. Raw mix
 3. Reserves
 4. Crushing
 5. Drying
 6. Pre-blending
 7. Storage and handling

3. **Raw milling and blending**
 1. Raw milling
 2. Blending
 3. Kiln feed

4. **Flames and fuels**
 1. Chemistry of combustion
 2. Fuels
 3. Physics of combustion
 4. Burner design
 5. Cement kiln burners
 6. Heat transfer
 7. Pollutant formation
 8. Modelling
 9. Fuel storage and firing systems in practice
 10. Insufflation
 11. Alternative and waste fuels (NEW)

5. **Burning and cooling**
 1. Chemical reactions
 2. Process variants
 3. Kiln burning
 4. Kiln control
 5. Volatiles in the kiln
 6. Kiln bypass
 7. Kiln start-up and shutdown
 8. Kiln refractories
 9. Clinker cooling
 10. Kiln mechanical
 11. Emergency power
 12. Plant control systems

6. **Cement milling**
 1. Storage of clinker and other components
 2. Cement milling
 3. Separators (classifiers)
 4. Ball mill circuit control
 5. Cement storage
 6. Cement dispatch
 7. Distribution
 8. Quality assurance and customer service

7. **Quality control**
 1. Sampling
 2. Chemical analysis
 3. Particle size analysis
 4. Thermal analysis
 5. Microscopy
 6. Virtual Cement and Concrete Testing Laboratory (VCCTL)
 7. Calorimetry
 8. Burnability
 9. Grindability
 10. Physical testing
 11. Process control analysis
 12. Chromate passivation
 13. Cement quality
 14. Setting time
 15. ASTC cement types and specifications
 16. European EN 197 cement specification
 17. Composite cements (intergrinds and blends)
 18. Supersulphated cement
 19. Calcium aluminate cement (CAC)
 20. Shrinkage-compensating cements (SCC)
 22. Concrete problems

8. **Maintenance**
 1. Maintenance benefits and costs
 2. Failure modes
 3. Computerised Maintenance Management Systems (CMMS)
 4. Reliability-Centred Maintenance (RCM)
 5. Maintenance cost management
 6. Maintenance organisation
 7. Role, planning and control
 8. Mobile equipment maintenance
 9. People and indicators

9. **Environment and pollution control**
 1. Dust collection
 2. Pollution control
 3. ISO 14000
 4. Sustainable development and climate change

10. **Hydration of Portland cement**
 1. Initial stage
 2. Induction or dormant stage
 3. Acceleration stage
 4. Deceleration stage

11. **Plant reporting**
 1. Definitions
 2. List of reports
 3. Inventories and feeders
 4. Downtime reporting
 5. Miscellaneous reporting
 6. Typical daily production report
 7. Typical process summary data
 8. Typical equipment downtime report
 9. Plant manning

12. **Accounting**
 1. Cost or management accounting
 2. Investment justification
 3. Capacity increase by process change
 4. Project cost estimation
 5. Financial statements

13. **Technical and process audits**
 1. Historical performance
 2. Kiln specific fuel consumption
 3. Cement mill specific power consumption
 4. Other systems
 5. De-bottlenecking
 6. Project audit
 7. Risk assessment
14. Plant assessment list 234

15. Cement plant construction and valuation 244

Section B – Process calculations and miscellaneous data

B1. Power 262

B2. Fans and air handling 265

B3. Conveying 272

B4. Milling 276

B5. Kilns and burning 284

B6. Fuels 299

B7. Materials 302

B8. Statistics 305

B9. Miscellaneous data 310

B10. Conversion tables 317

References 318

Index 335

Advertisers’ index 338

FREE to subscribers of
Fully revised and updated

The Cement Plant Operations Handbook
SEVENTH EDITION

The Concise Guide to Cement Manufacture
Philip A. Alsop, PhD

NEW
Extended chapter on alternative and waste fuels

Subscribe online at www.CemNet.com/subscribe
3. Raw milling and blending

Flame impingement None. Recirculating gases protect through the flame. Oxidising burning zone.

Effect of excess air on fuel consumption

Although the effect of excess air level on overall thermal efficiency has been understood for many years, the role of fuel consumption in the overall energy consumption has been less well recognized. The fuel consumption of the cement kiln is dependent upon the weight of grinding media. Periodically, make-up charge is added depending upon the weight of grinding media. The feed rate determines the ratio of feed to grinding media in the mill, the optimum steel to clinker ratio, however, provide a ‘cushion’ of cooler neutral gas which prevents impingement. The cement plant operations handbook –

Figure 4.5 Physical model of secondary air

1. flame length dependence upon excess air levels

Flames and fuels

Scientists have paid far less attention to diffusion flames than to premixed flames, despite the fact that the latter are far easier to model. Premixed flames are those with very high gas velocities in which the fuel and air are completely mixed. Special conditions exist in the kiln where partially premixed flames are likely to occur. The clinker and fuel are fed at a much lower velocity than in a gas turbine, and the gas velocities are lower as well. In addition, burner technology in the kiln is far more advanced than in gas turbines, and the flame lengths are far greater, if anything, than those in the gas turbine. Premixed flames are those in which the fuel and air are completely mixed. Special conditions exist in the kiln where partially premixed flames are likely to occur. The clinker and fuel are fed at a much lower velocity than in a gas turbine, and the gas velocities are lower as well. In addition, burner technology in the kiln is far more advanced than in gas turbines, and the flame lengths are far greater, if anything, than those in the gas turbine.

Figure 4.2 Draft tube burners

111

Drive

Guide vanes

Return vanes

Dispersion plate

Dust-laden gas flow

Cylindrical silos may be preferred where space is at a premium, despite a need for costly foundations and a more complex plant. They are often used in Europe. In North America, however, where space is not as precious and where the cost of foundations is low, the concrete silo is common. The finished product is collected by filters for transport to storage, prior to dispatch.

Chapter 6 Cement milling

Storage of clinker and cements

A cement factory will need to store both clinker and cement. Storage of the clinker is usually in large cylindrical silos, domes or sagoes. These can be filled with limestone and run down to refusal to avoid a perpetual inventory of high-value clinker. It is inadvisable to habitually run clinker silos down to the steel cone as abrasion will eventually cause problems. Kiln mechanical efficiency is low due to the high energy demands required for grinding. If the confined jet has momentum in excess of that required for complete entrainment of the secondary air, there is an entrained air into a segregating area above the grinding table. There, with decreasing air velocity, the attrition of clinker occurs and the product is collected for storage. Dynamic classifiers, used integrally with a roller mill (see Figure 6.10), involve the upward flow of dust-laden gas and the centrifugal force and the gas flow. The fine fraction exits upwards with the exhaust for subsequent collection as product, whereas the poor flame requires a much broader range of adjustments. Later developments of the O-Sepa have reduced airflow rates by around 30 per cent without sacrificing performance. The O-Sepa is now the standard for the cement industry.

Chapter 3 Raw milling and blending

Cylindrical mills are used in Europe. In North America, however, where space is at a premium, the concrete silo is common. The cement product is collected by filters for transport to storage, prior to dispatch.
Order your free copy today

Order form: return the completed order form by email, fax or post to the Subscriptions Department of *International Cement Review*.

Your details – all items must be completed.
Title: (Mr/Ms) Name:
Company: __
Address: __
__
City: __________________________ Post code: ________________________________
State/County: __
Country: __
Email: ___
Tel: __________________________ Fax: _________________________________
VAT number (if applicable): __
Signature: __

Delivery address – if different from above
Title: (Mr/Ms) Name: __
Company name: __
Position: __
Address: __
__
City: __________________________ Post code: ________________________________
State/County: __
Country: __
Email: ___
Tel: __________________________ Fax: _________________________________

Payment by direct remittance to:
Lloyds Bank, 120 High Street, Dorking, Surrey, RH4 1BB, United Kingdom.
SWIFT/BIC: LOYDGB21081 Sort Code: 30-92-70
GBP remit to: IBAN GB06 LOYD 3092 7000 3934 49
EUR remit to: IBAN GB94 LOYD 3092 7086 0621 68
USD remit to: IBAN GB78 LOYD 3092 7011 9900 55

Send completed order form to:
Subscriptions Department,
International Cement Review, Tradeship Publications Ltd,
Old King’s Head Court, 15 High Street, Dorking,
Surrey, RH4 1AR, United Kingdom.
Email: subscribe@CemNet.com Tel: +44 (0) 1306 740 363 Fax: +44 1306 740 660

For more information, visit
www.CemNet.com/CPOH7